
02-Apr-13

1

UNIT : 7

Reference :-Marty Hall, Larry Brown, “Core Servlets and JavaServer Pages
Volume – 1”, Pearson Education, 2nd ed.(2004)
Chapter :- 16 : Simplifying Access to Java Code : The JSP 2.0 Expression
Language

1 By : - Hetal Thaker

MVC Approach

• servlet responds to the request;

• invokes the appropriate business logic or data access code;

• places the resultant data in beans;

• stores the beans in the request, session, or servlet context;

• forwards the request to a JSP page to present the result.

2

By : - Hetal Thaker

Inconvenience in MVC Approach

• Final step  presenting the results in the JSP page.

• jsp:useBean and jsp:getProperty, but these elements are a bit
verbose and clumsy.

• jsp:getProperty only supports access to simple bean
properties; if the property is a collection or another bean,
accessing the "subproperties" requires you to use complex
Java syntax

3 By : - Hetal Thaker

JSP 2.0 EL

 JSP 2.0 EL

• simplify the presentation layer by replacing hard-to-maintain
Java scripting elements or clumsy jsp:useBean and
jsp:getProperty elements with short and readable entries of
the following form.

• ${expression}

4

By : - Hetal Thaker

Expression Language Capabilities

• Concise access to stored objects  To output a “Scoped
variable”

• E.g. (object stored with setAttribute in the PageContext,
HttpServletRequest, HttpSession, or ServletContext) named
saleItem use

 ${saleItem}

5 By : - Hetal Thaker

Expression Language Capabilities

• Shorthand notation for bean properties To output a
“Scoped variable”

• E.g. To output the companyName property (i.e., result of the
getCompanyName method) of a scoped variable named
company, you use

 ${company.companyName}

• To access the firstName property of the president property of
a scoped variable named company, use

${company.president.firstName}

6

02-Apr-13

2

By : - Hetal Thaker

Expression Language Capabilities

• Simple access to collection elements  To output a “Scoped
variable”

• E.g. To access an element of an array, List, or Map, you use

 ${variable[indexOrKey]}

• Provided that the index or key is in a form that is legal for Java
variable names, the dot notation for beans is interchangeable
with the bracket notation for collections.

7 By : - Hetal Thaker

Expression Language Capabilities

• Succinct access to request parameters, cookies, and other
request data  To access the standard types of request data,
you can use one of several predefined implicit objects.

• A small but useful set of simple operators  To manipulate
objects within EL expressions, you can use any of several
arithmetic, relational, logical, or empty-testing operators

• Conditional output  To choose among output options, you
do not have to resort to Java scripting elements. Instead, you
can use ${test ? option1 : option2}.

 8

By : - Hetal Thaker

Expression Language Capabilities

• Automatic type conversion  The expression language
removes the need for most typecasts and for much of the
code that parses strings as numbers.

• Empty values instead of error messages  In most cases,
missing values or NullPointerExceptions result in empty
strings, not thrown exceptions.

9 By : - Hetal Thaker

Invoking Expression Language

 ${expression}

• These EL elements can appear in ordinary text or in JSP tag
attributes, provided that those attributes permit regular JSP
expressions.

• Name: ${expression1} Address: ${expression2}
 <jsp:include page="${expression3}" />

• <jsp:include page="${expr1}test${expr2}" />

10

By : - Hetal Thaker

Preventing EL Evaluation

• In JSP 1.2 and earlier, strings of the form ${...} had no special
meaning.

• So, it is possible that the characters ${ appear within a
previously created page that is now being used on a server
that supports JSP 2.0.

• To deactivate the expression language in that page.

 Four options for doing so :

11 By : - Hetal Thaker

Preventing EL Evaluation - 1

• Deactivating the expression language in an entire Web
application  Use a web.xml file that refers to servlets 2.3
(JSP 1.2) or earlier.

• The JSP 2.0 expression language is automatically deactivated
in Web applications whose deployment descriptor (i.e., WEB-
INF/web.xml file) refers to servlet specification version 2.3 or
earlier (i.e., JSP 1.2 or earlier).

• FigureCompatible with JSP 1.2 EL should be deactivated by
default.

• Figure  Compatible with JSP 2.0 EL should be activated by default.

12

figure/16_01.png
figure/16_02.png

02-Apr-13

3

By : - Hetal Thaker

Preventing EL Evaluation - 2

• Deactivating the expression language in multiple JSP pages 
Use the jsp-property-group web.xml element to designate the
appropriate pages.

• use the el-ignored subelement of the jsp-property-group
web.xml element to designate the pages in which the
expression language should be ignored. Here is an example
that deactivates the expression language for all JSP pages in
the legacy directory.

• Figure  Web application whose deployment descriptor
specifies servlets 2.4 (JSP 2.0).

13 By : - Hetal Thaker

Preventing EL Evaluation - 3

• Deactivating the expression language in individual JSP pages  Use
the isELEnabled attribute of the page directive.

• To disable EL evaluation in an individual page, supply false as the
value of the isELEnabled attribute of the page directive, as follows.

 <%@ page isELEnabled="false" %>

• Note that the isELEnabled attribute is new in JSP 2.0 and it is an
error to use it in a server that supports only JSP 1.2 or earlier.

• So, you cannot use this technique to allow the same JSP page to run
in either old or new servers without modification.

• Consequently, the jsp-property-group element is usually a better
choice than the isELEnabled attribute.

14

By : - Hetal Thaker

Preventing EL Evaluation - 4

• Deactivating individual expression language statements In
JSP 1.2 pages that need to be ported unmodified across
multiple JSP versions (with no web.xml changes), replace $
with $, the HTML character entity for $.

• In JSP 2.0 pages that contain both expression language
statements and literal ${ strings, you can use \${ when you
want ${ in the output.

15 By : - Hetal Thaker

Preventing EL Evaluation - 4

• Suppose you have a JSP 1.2 page containing ${ that you want to use
in multiple places. In particular, you want to use it in both JSP 1.2
Web applications and in Web applications that contain expression
language pages,

• to be able to drop the page in any Web application without making
any changes either to it or to the web.xml file. Although this is an
unlikely scenario, it could happen, and none of the previously
discussed constructs will serve the purpose. In such a case, you
simply replace the $ with the HTML character entity corresponding
to the ISO 8859-1 value of $ (36). So, you replace ${ with ${
throughout the page. For example,

• ${blah} will portably display ${blah} to the user.

16

By : - Hetal Thaker

Preventing EL Evaluation - 4

• Note, however, that the character entity is translated to $ by
the browser, not by the server, so this technique will only
work when you are outputting HTML to a Web browser.

• Finally, suppose you have a JSP 2.0 page that contains both
expression language statements and literal ${ strings. In such a
case, simply put a backslash in front of the dollar sign. So, for
example,

• \${1+1} is ${1+1}. will output

• ${1+1} is 2.

17 By : - Hetal Thaker

Preventing Use of Standard Scripting
Elements

• Expression Language capability eliminates much of the need
for the explicit Java scripting elements.

• to use a no-classic-scripting-elements approach throughout
projects use the scripting-invalid subelement of jsp-property-
group to enforce this restriction.

• Figure

18

figure/16_03.png
figure/16_04.png

02-Apr-13

4

By : - Hetal Thaker

Accessing Scoped Variable

• To permit the JSP page to access the data, the servlet needs to
use setAttribute to store the data in one of the standard
locations:
– the HttpServletRequest,

– the HttpSession, or

– the ServletContext.

• Objects in these locations are known as "scoped variables.

• Note : scoped variables stored in the PageContext object, but
this is much less useful because the servlet and the JSP page
do not share PageContext objects.

19 By : - Hetal Thaker

Accessing Scoped Variable

• page-scoped variables apply only to objects stored earlier in
the same JSP page, not to objects stored by a servlet.

• ${name}

• <jsp:useBean id="name" type="somePackage.SomeClass"
scope="...">  you have to know which scope the servlet
used, and you have to know the fully qualified class name of
the attribute.

20

By : - Hetal Thaker

Accessing Scoped Variable

• Choosing Attribute Names

• To use the JSP expression language to access scoped variables,
you must choose attribute names that would be legal as Java
variable names. So, avoid dots, spaces, dashes, and other
characters that are permitted in strings but forbidden in
variable names.

• it is technically possible for attribute names to be repeated, so
you should be aware that the expression language searches
the PageContext, HttpServletRequest, HttpSession, and
ServletContext in that order.

 21 By : - Hetal Thaker

Accessing Collection

• The JSP 2.0 expression language lets you access different
types of collections in the same way: using array notation. For
instance, if attributeName is a scoped variable referring to an
array, List, or Map, you access an entry in the collection with
the following:

• ${attributeName[entryName]} If the scoped variable is an
array, the entry name is the index and the value is obtained
with theArray[index]. For example, if customerNames refers
to an array of strings,

• ${customerNames[0]} would output the first entry in the
array.

22

By : - Hetal Thaker

Accessing Collection

• If the scoped variable is an object that implements the List
interface, the entry name is the index and the value is
obtained with theList.get(index). For example, if
supplierNames refers to an ArrayList,

• ${supplierNames[0]} would output the first entry in the
ArrayList.

• If the scoped variable is an object that implements the Map
interface, the entry name is the key and the value is obtained
with theMap.get(key). For example, if stateCapitals refers to a
HashMap whose keys are U.S. state names and whose values
are city names,

• ${stateCapitals["maryland"]}

23 By : - Hetal Thaker

Accessing Collection

• would return "annapolis". If the Map key is of a form that
would be legal as a Java variable name, you can replace the
array notation with dot notation. So, the previous example
could also be written as:

• ${stateCapitals.maryland} However, note that the array
notation lets you choose the key at request time, whereas the
dot notation requires you to know the key in advance.

24

02-Apr-13

5

By : - Hetal Thaker

Accessing Collection

• would return "annapolis". If the Map key is of a form that
would be legal as a Java variable name, you can replace the
array notation with dot notation. So, the previous example
could also be written as:

• ${stateCapitals.maryland} However, note that the array
notation lets you choose the key at request time, whereas the
dot notation requires you to know the key in advance.

25 By : - Hetal Thaker

Referencing Implicit Objects

• The expression language is not restricted to use in the MVC
approach.

• pageContext

 The pageContext object refers to the PageContext of the
current page. The PageContext class, in turn, has request,
response, session, out, and servletContext properties (i.e.,
getRequest, getResponse, getSession, getOut, and
getServletContext methods). So, for example, the following
outputs the current session ID.

 ${pageContext.session.id}

26

By : - Hetal Thaker

Referencing Implicit Objects

 param and paramValues

• These objects let you access the primary request parameter
value (param) or the array of request parameter values
(paramValues).

• So, for example, the following outputs the value of the custID
request parameter (with an empty string, not null, returned if
the parameter does not exist in the current request).

• ${param.custID}

27 By : - Hetal Thaker

Referencing Implicit Objects

 header and headerValues

• These objects access the primary and complete HTTP request
header values, respectively. Remember that dot notation
cannot be used when the value after the dot would be an
illegal property name. So, for example, to access the Accept
header, you could use either

• ${header.Accept} or

• ${header["Accept"]} But, to access the Accept-Encoding
header, you must use

• ${header["Accept-Encoding"]}

28

By : - Hetal Thaker

Referencing Implicit Objects

 cookie

• The cookie object lets you quickly reference incoming cookies.
However, the return value is the Cookie object, not the cookie
value. To access the value, use the standard value property
(i.e., the getValue method) of the Cookie class.

• So, for example, either of the following outputs the value of
the cookie named userCookie (or an empty string if no such
cookie is found).

• ${cookie.userCookie.value} ${cookie["userCookie"].value}

29 By : - Hetal Thaker

Referencing Implicit Objects

 initParam

• The initParam object lets you easily access context
initialization parameters. For example, the following outputs
the value of the init param named defaultColor.

• ${initParam.defaultColor}

30

02-Apr-13

6

By : - Hetal Thaker

Referencing Implicit Objects

• pageScope, requestScope, sessionScope, and
applicationScope

• These objects let you restrict where the system looks for
scoped variables. For example, with

• ${name} the system searches for name in the PageContext,
the HttpServletRequest, the HttpSession, and the
ServletContext, returning the first match it finds. On the other
hand, with

• ${requestScope.name} the system only looks in the
HttpServletRequest.

31 By : - Hetal Thaker

EL Operators

• The JSP 2.0 expression language defines a number of
arithmetic, relational, logical, and missing-value-testing
operators.

 Note

• Use the expression language operators for simple tasks
oriented toward presentation logic (deciding how to present
the data).

• Avoid using the operators for business logic (creating and
processing the data). Instead, put business logic in regular
Java classes and invoke the code from the servlet that starts
the MVC process.

32

By : - Hetal Thaker

EL Arithmetic Operators

• + and –

• These are the normal addition and subtraction operators,
with two exceptions. First, if either of the operands is a string,
the string is automatically parsed to a number (however, the
system does not automatically catch
NumberFormatException). Second, if either of the operands is
of type BigInteger or BigDecimal, the system uses the
corresponding add and subtract methods.

33 By : - Hetal Thaker

EL Arithmetic Operators

• *, /, and div

• These are the normal multiplication and division operators,
with a few exceptions. First, types are converted automatically
as with the + and – operators. Second, the normal arithmetic
operator precedence applies, so, for instance,

• ${ 1 + 2 * 3} returns 7, not 9. You can use parentheses to
change the operator precedence. Third, the / and div
operators are equivalent; both are provided for the sake of
compatibility with both XPath and JavaScript (ECMAScript).

34

By : - Hetal Thaker

EL Arithmetic Operators

• % and mod

• The % (or equivalently, mod) operator computes the modulus
(remainder), just as with % in the Java programming language.

35 By : - Hetal Thaker

EL Relational Operators

• == and eq

• These two equivalent operators check whether the arguments
are equal. However, they operate more like the Java equals
method than the Java == operator. If the two operands are the
same object, true is returned. If the two operands are
numbers, they are compared with Java ==. If either operand is
null, false is returned. If either operand is a BigInteger or
BigDecimal, the operands are compared with compareTo.
Otherwise, the operands are compared with equals.

36

02-Apr-13

7

By : - Hetal Thaker

EL Relational Operators

• != and ne

• These two equivalent operators check whether the arguments
are different. Again, however, they operate more like the
negation of the Java equals method than the Java != operator.
If the two operands are the same object, false is returned. If
the two operands are numbers, they are compared with Java
!=. If either operand is null, true is returned. If either operand
is a BigInteger or BigDecimal, the operands are compared with
compareTo. Otherwise, the operands are compared with
equals and the opposite result is returned.

37 By : - Hetal Thaker

EL Relational Operators

• < and lt, > and gt, <= and le, >= and ge

• These are the standard arithmetic operators with two
exceptions. First, type conversions are performed as with ==
and !=. Second, if the arguments are strings, they are
compared lexically.

38

By : - Hetal Thaker

EL Logical Operators

• &&, and, ||, or, !, not

• These are the standard logical AND, OR, and NOT operators.
They operate by coercing their arguments to Boolean, and
they use the normal Java "short circuit" evaluation in which
the testing is stopped as soon as the result can be
determined. && and and are equivalent, || and or are
equivalent, and ! and not are equivalent.

39 By : - Hetal Thaker

empty Operator

• This operator returns true if its argument is null, an empty
string, an empty array, an empty Map, or an empty collection.
Otherwise it returns false.

40

