
22-May-13

1

UNIT : 8

Reference :-Marty Hall, Larry Brown, “Core Servlets and JavaServer Pages
Volume – 1”, Pearson Education, 2nd ed.(2004)
Chapter :- 17 : Accessing Database with JDBC

1 By : - Hetal Thaker

What is JDBC?

• JDBC provides a standard library for accessing relational
databases.

• By using the JDBC API, you can access a wide variety of SQL
databases with exactly the same Java syntax.

• Officially, JDBC is not an acronym and thus does not stand for
anything. Unofficially, "Java DataBase Connectivity" is
commonly used as the long form of the name.

2

By : - Hetal Thaker

Using JDBC

• Seven standard steps for querying databases

1. Load the driver

2. Define the Connection URL

3. Establish the Connection

4. Create a Statement object

5. Execute a query or update

6. Process the results

7. Close the connection

3 By : - Hetal Thaker

JDBC steps in brief

• Step 1  Load Driver

 Specify the classname of the database driver in the
Class.forName method.

 By doing so, it automatically creates a driver instance and
register it with the JDBC driver manager.

• Step 2  Define the Connection URL

 In JDBC, a connection URL specifies the server host, port, and
database name with which to establish a connection.

4

By : - Hetal Thaker

JDBC steps in brief

• Step 3  Establish the connection

 With the connection URL, username, and password, a
network connection to the database can be established.

 Once the connection is established, database queries can be
performed until the connection is closed.

• Step 4  Create a statement object

 Creating a Statement object enables you to send queries and
commands to the database.

5 By : - Hetal Thaker

JDBC steps in brief

• Step 5  Execute query or update

 Given a Statement object, you can send SQL statements to the
database by using the execute, executeQuery, executeUpdate, or
executeBatch methods.

• Step 6  Process the results.

 When a database query is executed, a ResultSet is returned. The
ResultSet represents a set of rows and columns that you can
process by calls to next and various getXxx methods.

• Step 7  Close the connection.

 When you are finished performing queries and processing results,
you should close the connection, releasing resources to the
database.

6

22-May-13

2

By : - Hetal Thaker

Step 1  Load JDBC Driver

• The driver is the piece of software that knows how to talk to
the actual database server.

• To load the driver, you just load the appropriate class; a static
block in the driver class itself automatically makes a driver
instance and registers it with the JDBC driver manager.

• how do you load a class without making an instance of it?

• how can you refer to a class whose name isn't known when
the code is compiled?

• The answer to both questions is to use Class.forName

7 By : - Hetal Thaker

Step 1  Load JDBC Driver

• Class.forName :

 This method takes a string representing a fully qualified
classname (i.e., one that includes package names) and loads
the corresponding class.

 This call could throw a ClassNotFoundException, so it should
be inside a try/catch block as shown below.

 try {

 Class.forName("connect.microsoft.MicrosoftDriver");
Class.forName("oracle.jdbc.driver.OracleDriver");
Class.forName("com.sybase.jdbc.SybDriver");

 } catch(ClassNotFoundException cnfe) {
System.err.println("Error loading driver: " + cnfe); }

8

By : - Hetal Thaker

Step 1  Load JDBC Driver

• The JDBC driver (which is on the client) translates calls written in
the Java programming language into the native format required by
the server, database server doesn’t require any changes.

• So obtain a JDBC driver specific to the database you are using and
that you will need to check the vendor's documentation for the
fully qualified class name to use.

• use Class.forName for any class in your CLASSPATH.

• Most JDBC driver vendors distribute their drivers inside JAR files. So,
during development be sure to include the path to the driver JAR
file in your CLASSPATH setting

 9 By : - Hetal Thaker

Step 1  Load JDBC Driver

• For deployment on a Web server, put the JAR file in the WEB-
INF/lib directory of your Web application.

• if multiple Web applications are using the same database
drivers, the administrator will place the JAR file in a common
directory used by the server. For example, in Apache Tomcat,
JAR files common to multiple applications can be placed in 1

 install_dir/common/lib.

• Two common JDBC driver implementations :

10

By : - Hetal Thaker

Step 1  Load JDBC Driver

 1) JDBC-ODBC bridge,

 A driver that uses the JDBC-ODBC bridge approach is known as a
Type I driver.

 Since many databases support Open DataBase Connectivity (ODBC)
access, the JDK includes a JDBC-ODBC bridge to connect to
databases

 2) pure Java implementation.

 Use the vendor's pure Java driver, if available, because the JDBC-
ODBC driver implementation is slower than a pure Java
implementation. Pure Java drivers are known as Type IV.

 Figure : JDBC Driver

 The JDBC specification defines two other driver types, Type II and
Type III; however, they are less common

11 By : - Hetal Thaker

Step 2  Define Connection URL

• After loading JDBC Driver, specify the location of the database
server.

• URLs referring to databases use the jdbc: protocol and embed the
server host, port, and database name (or reference) within the URL.

String host = "dbhost.yourcompany.com";

String dbName = "someName";

int port = 1234;

String oracleURL = "jdbc:oracle:thin:@" + host + ":" + port + ":" +
dbName; String sybaseURL = "jdbc:sybase:Tds:" + host + ":" +
port + ":" + "?SERVICENAME=" + dbName;

String msAccessURL = "jdbc:odbc:" + dbName;

12

figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png
figure/JDBC_Driver.png

22-May-13

3

By : - Hetal Thaker

Step 3  Establish Connection

• To make the actual network connection, pass the URL,
database username, and database password to the
getConnection method of the DriverManager class, throws an
SQLException, so you need to use a try/catch block.

String username = "jay_debesee";

String password = "secret";

Connection connection = DriverManager.

getConnection(oracleURL, username, password);

13 By : - Hetal Thaker

Step 3  Establish Connection

• Connection class methods :

1) prepareStatement : Creates precompiled queries for
submission to the database

2) prepareCall : Accesses stored procedures in the database.

3) rollback/commit: Controls transaction management.

4) close : Terminates the open connection.

5) isClosed : Determines whether the connection timed out
or was explicitly closed.

14

By : - Hetal Thaker

Step 3  Establish Connection

• Optional part of establishing the connection is to look up
information about the database with the getMetaData
method.

• This method returns a DatabaseMetaData object that has
methods with which you can discover
– the name and version of the database itself

(getDatabaseProductName, getDatabaseProductVersion) or

– of the JDBC driver (getDriverName, getDriverVersion)

15 By : - Hetal Thaker

Step 3  Establish Connection

 DatabaseMetaData dbMetaData = connection.getMetaData();
String productName =
dbMetaData.getDatabaseProductName();
System.out.println("Database: " + productName);

 String productVersion =
dbMetaData.getDatabaseProductVersion();
System.out.println("Version: " + productVersion);

16

By : - Hetal Thaker

Step 4  Create a statement object

• A Statement object is used to send queries and commands to
the database.

• It is created from the Connection using createStatement :

 Statement statement = connection.createStatement();

• Most, but not all, database drivers permit multiple concurrent
Statement objects to be open on the same connection.

 17 By : - Hetal Thaker

Step 5  Execute Query / Update

• A Statement object, you can use it to send SQL queries by
using the executeQuery method, which returns an object of
type ResultSet.

 String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

18

22-May-13

4

By : - Hetal Thaker

Step 5  Execute Query / Update

• Statement class example :

 1) executeQuery :

 Executes an SQL query and returns the data in a ResultSet.

 The ResultSet may be empty, but never null.

 2) executeUpdate :

 Used for UPDATE, INSERT, or DELETE commands. Returns the
number of rows affected, which could be zero. Also provides
support for Data Definition Language (DDL) commands, for
example, CREATE TABLE, DROP TABLE, and ALTER TABLE.

19 By : - Hetal Thaker

Step 5  Execute Query / Update

 3) executeBatch :

 Executes a group of commands as a unit, returning an array
with the update counts for each command.

 Use addBatch to add a command to the batch group. Note
that vendors are not required to implement this method in
their driver to be JDBC compliant.

 4) setQueryTimeout :

 Specifies the amount of time a driver waits for the result
before throwing an SQLException.

20

By : - Hetal Thaker

Step 5  Execute Query / Update

 5) getMaxRows / setMaxRows

 Determines the number of rows a ResultSet may contain.
Excess rows are silently dropped. The default is zero for no
limit.

 you can use a Statement object to create parameterized
queries by which values are supplied to a precompiled fixed-
format query

21 By : - Hetal Thaker

Step 6  Process the Results

• next method of ResultSet to move through the table a row at
a time.

• Within a row, ResultSet provides various getXxx methods that
take a column name or column index as an argument and
return the result.

• use getInt if the value should be an integer, getString for a
String, and so on for most other data types.

• If you just want to display the results, you can use getString
for most of the column types.

22

By : - Hetal Thaker

Step 6  Process the Results

• if you use the version of getXxx that takes a column index
(rather than a column name), note that columns are indexed
starting at 1 (following the SQL convention), not at 0 as with
arrays, vectors, and most other data structures in the Java
programming language.

• The first column in a ResultSet row has index 1, not 0.

 while(resultSet.next()) {
System.out.println(resultSet.getString(1) + " " +
resultSet.getString(2) + " " + resultSet.getString("firstname") +
" " resultSet.getString("lastname"));

 }

23 By : - Hetal Thaker

Step 6  Process the Results

• use the column name instead of the column index. That way,
if the column structure of the table changes, the code
interacting with the ResultSet will be less likely to fail.

• In JDBC 1.0, you can only move forward in the ResultSet;
however, in JDBC 2.0, you can move forward (next) and
backward (previous) in the ResultSet as well as move to a
particular row (relative, absolute).

• Be aware that neither JDBC 1.0 nor JDBC 2.0 provides a direct
mechanism to determine the JDBC version of the driver.

24

22-May-13

5

By : - Hetal Thaker

Step 6  Process the Results

• In JDBC 3.0, this problem is resolved by the addition of
getJDBCMajorVersion and getJDBCMinorVersion methods to
the DatabaseMetaData class.

25 By : - Hetal Thaker

Step 6  Process the Results

• ResultSet methods:

• 1) next / previous : Moves the cursor to the next (any JDBC
version) or previous (JDBC version 2.0 or later) row in the
ResultSet, respectively.

• 2) relative / absolute : The relative method moves the cursor a
relative number of rows, either positive (up) or negative
(down). The absolute method moves the cursor to the given
row number. If the absolute value is negative, the cursor is
positioned relative to the end of the ResultSet (JDBC 2.0).

26

By : - Hetal Thaker

Step 6  Process the Results

• 3) getXXX : Returns the value from the column specified by
the column name or column index as an Xxx Java type (see
java.sql.Types). Can return 0 or null if the value is an SQL
NULL.

• 4) wasNull : Checks whether the last getXxx read was an SQL
NULL. This check is important if the column type is a primitive
(int, float, etc.) and the value in the database is 0. A zero value
would be indistinguishable from a database value of NULL,
which is also returned as a 0. If the column type is an object
(String, Date, etc.), you can simply compare the return value
to null.

27 By : - Hetal Thaker

Step 6  Process the Results

• 5) findColumn : Returns the index in the ResultSet
corresponding to the specified column name.

• 6) getRow : Returns the current row number, with the first
row starting at 1 (JDBC 2.0).

• 7) getMetaData : Returns a ResultSetMetaData object
describing the ResultSet. ResultSetMetaData gives the
number of columns and the column names

28

By : - Hetal Thaker

Step 6  Process the Results

• To be able to dynamically discover high-level information
about the result. That is the role of the ResultSetMetaData
class: it lets you determine the number, names, and types of
the columns in the ResultSet.

• ResulteSetMetaData methods :

• 1) getColumnCount : Returns the number of columns in the
ResultSet.

• 2) getColumnName : Returns the database name of a column
(indexed starting at 1).

29 By : - Hetal Thaker

Step 6  Process the Results

• 3) getColumnType : Returns the SQL type, to compare with
entries in java.sql.Types.

• 4) isReadOnly : Indicates whether the entry is a read-only
value.

• 5) isSearchable : Indicates whether the column can be used in
a WHERE clause.

• 6) isNullable : Indicates whether storing NULL is legal for the
column.

30

22-May-13

6

By : - Hetal Thaker

Step 6  Process the Results

• ResultSetMetaData does not include information about the
number of rows; however, if your driver complies with JDBC
2.0, you can call last on the ResultSet to move the cursor to
the last row and then call getRow to retrieve the current row
number

31 By : - Hetal Thaker

Step 7  Close the connection

• To close the connection explicitly :

 connection.close();

• Closing the connection also closes the corresponding
Statement and ResultSet objects.

• Reusing existing connections is such an important
optimization that the JDBC 2.0 API defines a
ConnectionPoolDataSource interface for obtaining pooled
connections.

32

