
22-May-13

1

UNIT : 9

Reference :-Marty Hall, Larry Brown, “Core Servlets and JavaServer Pages
Volume – 2”, Pearson Education, 2nd ed.(2004)
Chapter :- 07 : TAG Libraries : The Basics

1 By : - Hetal Thaker

Dynamic code in JSP

• to generating dynamic content inside the JSP page.

 These options are as follows:

• Scripting elements calling servlet code directly

• Scripting elements calling servlet code indirectly (by means of
utility

classes)

• Beans

• Servlet/JSP combo (MVC)

• MVC with JSP expression language

• Custom tags

2

By : - Hetal Thaker

Tag Library Component

 To use custom JSP tags, you need to define three separate
components:

• The tag handler class that defines the tag's behavior

• The TLD file that maps the XML element names to the tag

implementations

• The JSP file that uses the tag library

3 By : - Hetal Thaker

Tag Handler Class

• When defining a new tag, your first task is to define a Java
class that tells the system what to do when it sees the tag.

• This class must implement theSimpleTag interface.

• In practice, you extend SimpleTagSupport, which implements
the SimpleTag interface and supplies standard
implementations for some of its methods.

• Both the SimpleTag interface and the SimpleTagSupport class
reside in the javax.servlet.jsp.tagext package.

4

By : - Hetal Thaker

Tag Handler Class

• Every tag handler must have a no-arg constructor or its instantiation
will fail.

• The code that does the actual work of the tag goes inside the doTag
method.

• Usually, this code outputs content to the JSP page by invoking the
print method of the JspWriter class.

• To obtain an instance of the JstWriter class you call getJsp-

 Context().getOut() inside the doTag method.

• The doTag method is called at request time.

5 By : - Hetal Thaker

Tag Handler Class

• A new instance of the tag handler class is created for every tag
occurrence on the page.

• You place the compiled tag handler in the same location you
would place a regular servlet, inside the WEB-INF/classes
directory, keeping the package structure intact.

• For example, if your tag handler class belongs to the mytags
package and its class name is MyTag, you would place the
MyTag.class file inside the WEB-INF/classes/mytags/ directory.

6

22-May-13

2

By : - Hetal Thaker

Tag Handler Class

• A new instance of the tag handler class is created for every tag
occurrence on the page.

• You place the compiled tag handler in the same location you
would place a regular servlet, inside the WEB-INF/classes
directory, keeping the package structure intact.

• For example, if your tag handler class belongs to the mytags
package and its class name is MyTag, you would place the
MyTag.class file inside the WEB-INF/classes/mytags/ directory.

7 By : - Hetal Thaker

Tag Library Descriptor File

• Identify this class to the server and to associate it with a
particular XML tag name.

• This file contains some fixed information (e.g., XML Schema
instance declaration), an arbitrary short name for your library,
a short description, and a series of tag descriptions.

8

By : - Hetal Thaker

Tag Library Descriptor File

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
version="2.0">
<tlib-version>1.0</tlib-version>
<short-name>csajsp-taglib</short-name>
<tag>
<description>Example tag</description>
<name>example</name>
<tag-class>package.TagHandlerClass</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

9 By : - Hetal Thaker

Tag Library Descriptor File

• tag element through the following subelements.

• description : This optional element allows the tag developer to document
the purpose of the custom tag.

• name: This required element defines the name of the tag as it will be
referred to by the JSP page (really tag suffix, as will be seen shortly).

• tag-class : This required element identifies the fully qualified name of the
implementing tag handler class.

• body-content : This required element tells the container how to treat the
content between the beginning and ending occurrence of the tag, if any.
The value that appears here can be either empty, scriptless,
tagdependent, or JSP.

10

By : - Hetal Thaker

Tag Library Descriptor File

 The value of empty means that no content is allowed to
appear in the body of the tag.

 This would mean that the declared tag can only appear in the
form:

 <prefix:tag/>

 or

 <prefix:tag></prefix:tag>

 (without any spaces between the opening and closing tags).
Placing any content inside the tag body would generate a
page translation error.

11 By : - Hetal Thaker

Tag Library Descriptor File

• The value of scriptless means that the tag body is allowed to have JSP
content as long as it doesn’t contain any scripting elements like <% ... %>
or <%= ... %>. If present, the body of the tag would be processed just like
any other JSP content.

• The value of tagdependent means that the tag is allowed to have any type

of content as its body. However, this content is not processed at all and
completely ignored.

• It is up to the developer of the tag handler to get access to that content
and do something with it.

• For example, if you wanted to develop a tag that would allow the JSP page
 developer to execute an SQL statement, providing the SQL in the body of

the tag, you would use tagdependent as the value of the body-content
element.

12

22-May-13

3

By : - Hetal Thaker

Tag Library Descriptor File

• Finally, the value of JSP is provided for backward compatibility with the
classic custom tag model. It is not a legal value when used with the
SimpleTag API.

• When using the SimpleTag API, it is illegal to include scripting
elements in the body of the tag.

• The TLD file must be placed inside the WEB-INF directory or
any subdirectory thereof.

13 By : - Hetal Thaker

Tag Library Descriptor File

• Finally, the value of JSP is provided for backward compatibility with the
classic custom tag model. It is not a legal value when used with the
SimpleTag API.

• When using the SimpleTag API, it is illegal to include scripting
elements in the body of the tag.

• The TLD file must be placed inside the WEB-INF directory or
any subdirectory thereof.

14

By : - Hetal Thaker

Assigning attribute to files

• <prefix:name attribute1="value1" attribute2="value2"... />

• attributes allow us to pass information to the tag.

15 By : - Hetal Thaker

Tag Attributes : Tag Handler class

• Use of an attribute called attribute1 simply results in a call to
a method called setAttribute1 in your class that extends
SimpleTagSupport (or that otherwise implements the Simple-
Tag interface).

 public void setAttribute1(String value1) {

 doSomethingWith(value1);

 }

• Attribute with the name of attributeName (lowercase a)
corresponds to a method called setAttributeName (uppercase
A).

16

By : - Hetal Thaker

Tag Attributes : Tag Handler class

private String message = "Default Message";

public void setMessage(String message) {

this.message = message;

}

• If the tag handler is accessed from other classes, it is a good
idea to provide a getAttributeName method in addition to the
setAttributeName method. Only setAttributeName is
required, however.

17 By : - Hetal Thaker

Tag Attributes : Tag Library Descriptor

• Tag attributes must be declared inside the tag element by
means of an attribute element.

• The attribute element has three nested elements that can

appear between <attribute> and </attribute>.

• 1) name : This is a required element that defines the case-
sensitive attribute name.

18

22-May-13

4

By : - Hetal Thaker

Tag Attributes : Tag Library Descriptor

• 2) required
• This is an optional element that stipulates whether the

attribute must always be supplied, true, or is optional, false
(default).

• If required is false and the JSP page omits the attribute, no call
is made to the setAttributeName method, so be sure to give
default values to the fields that the method sets if the
attribute is not declared as required.

• Omitting a tag attribute, which is declared with the required
element equal to true, results in an error at page translation
time.

 19 By : - Hetal Thaker

Tag Attributes : Tag Library Descriptor

• rtexprvalue
• This is an optional element that indicates whether the

attribute value can be either a JSP scripting expression like
<%= expression %> or JSP EL like ${bean.value} (true), or
whether it must be a fixed string (false).

• The default value is false, so this element is usually omitted
except when you want to allow attributes to have values
determined at request time.

20

By : - Hetal Thaker

Tag Attributes : JSP File

• the JSP page has to declare the tag library using the taglib
directive.

 <%@ taglib uri="..." prefix="..." %>

• the attribute names are case-sensitive and have to appear in
the JSP page exactly as they were declared inside the TLD file.

• the value of an attribute has to be enclosed by either single or
double quotes.

• For example: <some-prefix:tag1 attribute1="value" />

21 By : - Hetal Thaker

Including tag body in tag output

• Up to this point, all of the custom tags you have seen did not
allow a body and thuswere always used as standalone tags of
the following form:

• <prefix:tagname/>

• <prefix:tagname></prefix:tagname>

• The fact that these tags were not allowed to include a body
was a direct result of supplying the element body-content
with the value of empty

22

By : - Hetal Thaker

Tag bodies : Tag Handler Class

• To output the body content of the tag, inside the doTag
method you need to acquire the JspFragment instance
representing the body of the tag by calling the getJspBody
method, then using its invoke method passing it null as its
argument.

• getJspBody().invoke(null);

• JspWriter out = getJspContext().getOut();

• out.print("...");

• getJspBody().invoke(null);

• out.print("...");
23

