
UNIT : 6

Reference :-Marty Hall, Larry Brown, “Core Servlets and JavaServer Pages Volume – 1”, Pearson Education,
2nd ed.(2004)
Chapter :- 11 : Invoking Java Code with JSP Scripting Elements

1

By : - Hetal Thaker

Creating Template Text

• a large percentage of your JSP document consists of static text (usually HTML), known as
template text.

• if you want to have <% or %> in the output, you need to put <\% or %\> in the template
text.

• if you want a comment to appear in the JSP page but not in the resultant document, use

<%-- JSP Comment --%>

HTML comments of the form

<!-- HTML Comment --> are passed through to the client normally.

2

By : - Hetal Thaker

Invoking JAVA Code from JSP

• Strategies for invoking dynamic code from JSP

3

By : - Hetal Thaker

Invoking JAVA Code from JSP

• The size and complexity of the project is the most important factor in deciding which
approach is appropriate.

• Putting small amounts of Java code directly in JSP pages works fine for simple
applications, using long and complicated blocks of Java code in JSP pages yields a
result that is hard to maintain, hard to debug, hard to reuse, and hard to divide
among different members of the development team

4

By : - Hetal Thaker

Type of JSP Scripting Elements

• JSP scripting elements let you insert Java code into the servlet that will be generated
from the JSP page.

• Three forms:

• Expressions of the form <%= Java Expression %>, which are evaluated and inserted
into the servlet's output.

• Scriptlets of the form <% Java Code %>, which are inserted into the servlet's
_jspService method (called by service).

• Declarations of the form <%! Field/Method Declaration %>, which are inserted into
the body of the servlet class, outside any existing methods.

5

By : - Hetal Thaker

Using JSP Expressions

• A JSP expression is used to insert values directly into the output. It has the following
form:

<%= Java Expression %>

• The expression is evaluated, converted to a string, and inserted in the page.

• This evaluation is performed at runtime (when the page is requested) and thus has
full access to information about the request.

For example, the following shows the date/time that the page was requested.

Current time: <%= new java.util.Date() %>

6

By : - Hetal Thaker

Predefined Variables

• request, the HttpServletRequest.

• response, the HttpServletResponse.

• session, the HttpSession associated with the request

• out, the Writer (a buffered version of type JspWriter) used to send output to the
client.

• application, the ServletContext. This is a data structure shared by all servlets and JSP
pages in the Web application and is good for storing shared data.

7

By : - Hetal Thaker

JSP / Servlet Correspondence

• JSP expressions basically become print (or write) statements in the servlet that
results from the JSP page.

• Whereas regular HTML becomes print statements with double quotes around the
text, JSP expressions become print statements with no double quotes.

• Instead of being placed in the doGet method, these print statements are placed in a
new method called _jspService that is called by service for both GET and POST
requests.

• Tomcat Autogenerated Servlet Source Code

install_dir/work/Standalone/localhost/_ (The final directory is an underscore.

8

By : - Hetal Thaker

XML Syntax for Expressions

• XML authors can use the following alternative syntax for JSP expressions:

• <jsp:expression>Java Expression</jsp:expression>

• XML elements, unlike HTML ones, are case sensitive

9

By : - Hetal Thaker

Writing Scriptlets

• To do something more complex than output the value of a simple expression, JSP
scriptlets let you insert arbitrary code into the servlet's _jspService method .

• Scriptlets have the following form:

<% Java Code %>

• Scriptlets have access to the same automatically defined variables as do expressions
(request, response, session, out, etc.).

10

By : - Hetal Thaker

Writing Scriptlets

• <% String queryData = request.getQueryString(); out.println("Attached GET data: " +
queryData); %>

Or

• <% String queryData = request.getQueryString(); %> Attached GET data: <%=
queryData %>

Or

• Attached GET data: <%= request.getQueryString() %>

11

By : - Hetal Thaker

Writing Scriptlets

• scriptlets can perform a number of tasks that cannot be accomplished with
expressions.

– setting response headers and status codes,

– invoking side effects such as writing to the server log or

– updating a database, or

– executing code that contains loops, conditionals, or

– other complex constructs

• For instance, the following snippet specifies that the current page is sent to the
client as Microsoft Word, not as HTML (which is the default).

<% response.setContentType("application/msword"); %>

12

By : - Hetal Thaker

Writing Scriptlets

• the scriptlet code is just directly inserted into the _jspService method: no strings, no
print statements, no changes whatsoever.

• JSP expressions contain Java values (which do not end in semicolons), whereas most
JSP scriptlets contain Java statements (which are terminated by semicolons).

• Expressions get placed inside print or write statements.

13

By : - Hetal Thaker

XML Syntax for Scriptlets

• The XML equivalent of <% Java Code %> is

<jsp:scriptlet>Java Code</jsp:scriptlet>

14

By : - Hetal Thaker

Scriptlets to Make JSP Page Conditional

• Use of scriptlets is to conditionally output HTML or other content that is not within
any JSP tag.

• code inside a scriptlet gets inserted into the resultant servlet's _jspService method
(called by service) exactly as written and

• Any static HTML (template text) before or after a scriptlet gets converted to print
statements.

15

By : - Hetal Thaker

Using Declarations

• A JSP declaration lets you define methods or fields that get inserted into the main
body of the servlet class (outside the _jspService method that is called by service to
process the request).

• A declaration has the following form:

<%! Field or Method Definition %>

• Since declarations do not generate output, they are normally used in conjunction
with JSP expressions or scriptlets.

16

By : - Hetal Thaker

Using Declarations

• JSP declarations can contain field (instance variable) definitions, method definitions,
inner class definitions, or even static initializer blocks: anything that is legal to put
inside a class definition but outside any existing methods.

• Do not use JSP declarations to override the standard servlet life-cycle methods
(service, doGet, init, etc.).

• For initialization and cleanup in JSP pages, use JSP declarations to override jspInit or
jspDestroy, not init or destroy.

17

By : - Hetal Thaker

Using Declarations

• Define most methods with separate Java classes, not JSP declarations.

• Moving the methods to separate classes (possibly as static methods) makes them
– easier to write (since you are using a Java environment, not an HTML-like one),

– easier to test (no need to run a server),

– easier to debug (compilation warnings give the right line numbers; no tricks are needed to see
the standard output), and

– easier to reuse (many different JSP pages can use the same utility class).

18

By : - Hetal Thaker

JSP/Servlet Correspondence

• JSP declarations result in code that is placed inside the servlet class definition but
outside the _jspService method.

• The XML equivalent of <%! Field or Method Definition %> is

<jsp:declaration>Field or Method Definition</jsp:declaration>

19

By : - Hetal Thaker

XML Syntax for Declarations

• Multiple client requests to the same servlet result only in multiple threads calling
the service method of a single servlet instance.

• They do not result in the creation of multiple servlet instances except possibly when
the servlet implements the now-deprecated SingleThreadModel interface.

• Thus, instance variables (fields) of a normal servlet are shared by multiple requests,
and accessCount does not have to be declared static.

20

By : - Hetal Thaker

XML Syntax for Declarations

• you couldn't use this for a real hit counter, since the count starts over whenever you
restart the server.

• real hit counter would need to use jspInit and jspDestroy to read the previous count
at startup and store the old count when the server is shut down.

• if you use jspDestroy, it would be possible for the server to crash unexpectedly (e.g.,
when a rolling blackout strikes Silicon Valley). So, you would have to periodically
write the hit count to disk.

21

By : - Hetal Thaker

Using Predefined Variables

• Eight automatically defined local variables in _jspService, sometimes called "implicit
objects.“

• Local variables. Not constants. Not JSP reserved words.

• these variables are not accessible in declarations.

22

By : - Hetal Thaker

Using Predefined Variables

Object Type

out JspWriter

request HttpServletRequest

response HttpServletResponse

config ServletConfig

application ServletContext

session HttpSession

pageContext PageContext

page Object

exception Throwable

23

By : - Hetal Thaker

Using Predefined Variables

• out

This variable is the Writer used to send output to the client.

However, to make it easy to set response headers at various places in the JSP page,
out is not the standard PrintWriter but rather a buffered version of Writer called
JspWriter.

The out variable is used almost exclusively in scriptlets since JSP expressions are
automatically placed in the output stream and thus rarely need to refer to out
explicitly.

24

By : - Hetal Thaker

Example : out

25

By : - Hetal Thaker

Using Predefined Variables

• request

This variable is the HttpServletRequest associated with the request;

it gives you access to

The request parameters, the

request type (e.g., GET or POST), and

the incoming HTTP headers (e.g., cookies).

26

By : - Hetal Thaker

Example of Request

27

By : - Hetal Thaker

Using Predefined Variables

• response

This variable is the HttpServletResponse associated with the response to the client.

28

By : - Hetal Thaker

Example : response

29

By : - Hetal Thaker

Using Predefined Variables

• config

This variable is the ServletConfig object for this page.

In principle, you can use it to read initialization parameters, but, in practice,
initialization parameters are read from jspInit, not from _jspService.

30

By : - Hetal Thaker

Example : config

31

By : - Hetal Thaker

Example : config

32

By : - Hetal Thaker

Using Predefined Variables

• application

This variable is the ServletContext as obtained by getServletContext.

Servlets and JSP pages can store persistent data in the ServletContext object rather
than in instance variables.

ServletContext has setAttribute and getAttribute methods that let you store
arbitrary data associated with specified keys

33

By : - Hetal Thaker

Using Predefined Variables

• application

The difference between storing data in instance variables and storing it in the
ServletContext is that the ServletContext is shared by all servlets and JSP pages in
the Web application, whereas instance variables are available only to the same
servlet that stored the data.

application.getInitParameter(“cnm”);

34

By : - Hetal Thaker

Example : application

35

By : - Hetal Thaker

Using Predefined Variables

• session

This variable is the HttpSession object associated with the request.

Sessions are created automatically in JSP, so this variable is bound even if there is no
incoming session reference.

36

By : - Hetal Thaker

Using Predefined Variables

• pageContext

JSP introduced a class called PageContext to give a single point of access to many of the
page attributes.

The PageContext class has methods getRequest, getResponse, getOut, getSession, and so
forth.

The pageContext variable stores the value of the PageContext object associated with the
current page.

If a method or constructor needs access to multiple page-related objects, passing
pageContext is easier than passing many separate references to request, response, out, and
so forth.

37

By : - Hetal Thaker

Using Predefined Variables

• page

This variable is simply a synonym for this and is not very useful.

It was created as a placeholder for the time when the scripting language could be
something other than Java.

38

